Question No.	Explanation
2	Since the month begins with a Sunday, to there will be five Sundays in the month. $\begin{aligned} \text { Required average } & =\left(\frac{510 \times 5+240 \times 25}{30}\right) \\ & =\frac{8550}{30} \\ & =285 \end{aligned}$
3	$34 \times 3=102$ minutes. You need to make 34 cuts to get 35 pieces.
4	To make the one's digit on both sides to be the same, i.e. 2 , the unknown number can be 4 or 9. However, 93 will make the right side of the equation much larger than the left side. The answer is 4.
5	At the end they each had 200/4 = 50 beads. Aaron had 50 $+26-4=72$ beads. Bessy had $50+$ $36-26=60$ beads. Carli had 50+32-36=46 beads. Dawn had 50+4-32=22 beads.
11	The volume of the water in the tank is $10 * 40 * 40$ cubic cm . The area of the base of the cubic shaped metal is $30 * 30=900$ square cm . After the metal piece is placed in the fish tank, the area of the base is reduced to 402-302 square cm . The volume of water remains unchanged. Therefore, the height of the water level is: $\left(10^{*} 40 * 40\right) /(402-302)=22.86 \mathrm{~cm}$
13	To get the largest surface area, you need to glue the smallest surfaces together, in this case 5 $\mathrm{cm} \times 2 \mathrm{~cm}$ surfaces. Therefore, the largest surface area is: $(150 \times 2+2 \times 5+150 \times 5) \times 2=2120$ square cm
14	To get the smallest surface area, you need to glue the largest surfaces together, in this case $50 \mathrm{~cm} \times 5 \mathrm{~cm}$ surfaces. Therefore, the smallest surface area is: $(50 \times 8+8 \times 5+50 \times 5) \times 2=$ 1380 square cm
15	Removing square F increases perimeter by 2 units.
16	Tunnel plus train length $=20 \times 60=1200$ meters. Therefore, tunnel length $=1200-240=960$ meters.
17	Let's call Soma's speed S. $20 \times 18-\mathrm{S} \times 18=270$ (the train's speed). Therefore Soma's speed $\mathrm{S}=$ $(20 \times 18-270) \div 18=10$ meters/second.
18	At 10:00 am, Train \#1 has traveled $60 \times 2=120 \mathrm{~km}$. The remaining distance between the 2 trains is $650-120=430 \mathrm{~km}$. The time it takes for the 2 trains to meet is $430 /(60+70)=3.3$ hours. 3.3 hours is 3 hours and 18.5 min . Therefore, they will meet at $1: 19 \mathrm{pm}$.
19	The amount of grass that 10 sheep eat in 20 days = original amount of grass + new growth in 20 days. The amount of grass that 15 sheep eat in 10 days = original amount of grass + new growth in 10 days. Assume the amount of grass one sheep eats in one day is 1 . Therefore, The amount of grass 10 sheep eat in 20 days $=1 \times 10 \times 20=200$ The amount of grass 15 sheep eat in 10 days $=1 \times 15 \times 10=150$ The amount of grass that grows in 10 days is $200-150=50$ The amount of grass that grows in one day is $50 / 10=5$, which can feed 5 sheep for one day; Therefore the original amount of grass is 200-5 $\times 20=100$. Since new grass grows in one day can feed 5 sheep, the original grass only needs to feed 20 sheep. (25-5 = 20) Therefore, 25 sheep can feed on the land for $100 /(25-5)=5$ days

20	1 worker in one day can assemble 360/4/3=30 car seats. 900/30/3=10 days.
23	Must earn $4 \times \$ 1,000.00+4 \times \$ 152.00=4608$. Number of houses $=4608 / \$ 256 /$ house $=18$ houses.
24	Puppies made in 3 years $2+3(2)+5(2)=18$. Money made $18 \times(\$ 200.00)=\$ 3600.00$.
25	\$9.75-\$8.00 = \$1.75. \$1.75/\$0.25/yr = 7 years. Therefore, $1989+7=1996$
26	There are 7 days in a week. $200 \div 7=28$ remainder 4; Therefore, 200 days from today is Wednesday
27	In 5 days the amount of rice that the restaurant consumed is: $120 \times 5=600 \mathrm{~kg}$. i.e. $600 \mathrm{~kg}=4 / 5$ of the rice bought. i.e. $1 / 5$ of the rice bought $=150 \mathrm{~kg}$. Therefore, the total amount of rice the restaurant bought is $150 * 5=750 \mathrm{~kg}$
28	In 10 days the amount of flour the bakery consumed is: $60 \times 10=600 \mathrm{~kg}$. i.e. $600 \mathrm{~kg}=3 / 4$ of the flour bought. i.e. $1 / 4$ of the flour bought $=200 \mathrm{~kg}$. Therefore, the total amount of flour the bakery bought is $200 * 4=800 \mathrm{~kg}$; Or $600+200=800 \mathrm{~kg}$.
29	Chocolates taken out $=2.2-0.7=1.5 \mathrm{~kg}$, which is $3 / 4$ of all the chocolates. Therefore the total weight of the chocolates is $1.5 \div(3 / 4)=2 \mathrm{~kg}$. Therefore, the weight of the box is 0.2 kg .
30	There are 31 days in January. There are 31+25-1 = 55 days from January 1st to February 25th. There are 7 days in a week. $55 \div 7=7$ remainder 6; Therefore February 25 th is on a Wednesday.
31	$4 \times(5+1)=24$
34	This is a multiplication series; each number is 3 times the previous number.
35	This is a simple subtraction series in which a random number, 93 , is interpolated as every third number. In the subtraction series, 10 is subtracted from each number to arrive at the next.
36	
37	The points are $\mathrm{A}(0.5,1.5), \mathrm{C}(2,6)$ and $\mathrm{E}(-1,-3)$
38	
39	There are lots of different paths to check, but we can save time by looking at small groups of paths.

	From C to F directly costs $\$ 9$, but going via E reduces the cost to $\$ 7$. From D to F directly costs $\$ 11$, but going via E reduces the cost to $\$ 7$. There are only three routes to F : from C, E and D , but going via E is always cheaper. ACE is $\$ 9$. ABE is $\$ 9$, and ADE is $\$ 7$. The cheapest path is therefore ADEF at $5+2+5=\$ 12$
40	
41	
42	
43	
44	
45	

46	
47	
48	
49	Score 9 in three ways: 1 bag in 1 and 2 bags in 4 , or 1 bag in 2,1 bag in 3, 1 bag in 4 , or 3 bags in 3.
50	5 fireworks made 3 stars and 1 made 4 stars.
51	$\begin{aligned} & 1 \times 2=2 \\ & 1 \times 2=2 \\ & 1 \times 2=2 \\ & 2+2+2=6 \\ & \\ & 1+2+1+2+1+2=9 \\ & 2+1=3 \\ & 2+1=3 \\ & 2+1=3 \\ & 3 \times 3 \times 3=27 \end{aligned}$
52	There are 16 different ways: 1 way for 4 red; 1 way for 4 yellow; 4 ways for 3 red and 1 yellow; 4 ways for 1 red and 3 yellow; 6 ways for 2 red and 2 yellow
53	$\begin{aligned} & \mathrm{n} \times(\mathrm{n}+1) / 2 \\ & \mathrm{n}=13 \\ & 13 \times 14 / 2=13 \times 7=91 \end{aligned}$

54	
55	7 fireworks made 3 stars and 1 firework made 4 stars.
56	There are 9 tricycles and 2 go-carts, or 4 tricycles and 5 go-carts.
57	Let the son's present age be x years. Then, $(38-\mathrm{x})=\mathrm{x}$ $\begin{aligned} & 2 x=38 \\ & x=19 . \end{aligned}$ Son's age 5 years back ($19-5$) $=14$ years.
58	Let C's age be x years. Then, B's age $=2 x$ years. A's age $=(2 x+2)$ years. $\begin{aligned} & (2 x+2)+2 x+x=27 \\ & 5 x=25 \\ & x=5 \end{aligned}$ Hence, B 's age $=2 x=10$ years.
59	Let the son's present age be x years. Then, man's present age $=(x+24)$ years. $\begin{aligned} & (x+24)+2=2(x+2) \\ & x+26=2 x+4 \\ & x=22 \end{aligned}$
60	Let the present ages of son and father be x and ($60-x$) years respectively. Then, $(60-x)-6=5(x-6)$ $\begin{aligned} & 54-x=5 x-30 \\ & 6 x=84 \\ & x=14 . \end{aligned}$ Son's age after 6 years $=(x+6)=20$ years.

